Skip to main content
Log in

An in vitro model of the back of the eye for studying retinal pigment epithelial-choroidal endothelial interactions

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

At the back of the eye, the outermost cell layer of the retina, the pigmented epithelium, lies against a basement membrane that is adjacent to the choroidal vessels that supply the outer sensory retina. During pathogenesis, these interfaces become damaged, and the homeostatic balance between the retinal pigment epithelium (RPE) and the choroidal vessels becomes disrupted, leading to choroidal neovascularization and blindness. To study the cell interactions at the back of the eye, we have used a coculture system in which a stable RPE monolayer has been cultured on a transwell insert and placed over a collagen gel sandwich into which choroidal endothelial cells (CECs) have been seeded. RPE cells have been stimulated by an inflammatory cytokine, interleukin-1 (IL-1β), and the ability of the underlying choroidal endothelium to form vascular tubes has been tested. IL-1β stimulation of the RPE insert increased the number of tubes formed by CECs in the gel as early as 3 d. By 7 d, tubes began to regress. Both IL-8 and monocyte chemotactic protein-1 (MCP-1) were found to be secreted in greater amounts in stimulated RPE. Because MCP-1 is also a chemokine for monocytes, which in turn secrete angiogenic factors, monocytes were added to the upper surface of the choroidal gel sandwich and then incubated with the stimulated RPE insert as above. By day 7, more tubes formed and there was no regression over the experimental time period. The versatility of this model has been illustrated in that both RPE and CECs can be cultured in a more natural construct and their molecular interactions tested by physiologically altering one cell type and not the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D. H.; Lioyd, A. R. Chemokines: leukocyte recruitment and activation cytokines. Lancet 349:490–495; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Bikfalvi, A.; Cramer, E. M.; Tenza, D.; Tobelem, G. Phenotypic modulations of human umbilical vein endothelial cells and human dermal fibroblasts using two angiogenic assays. Biol. Cell 72:275–278; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Bruno, V.; Vittel, D.; Feige, J.-J. In vitro models of vasculogenesis and angiogenesis. Lab. Invest. 81:439–452; 2001.

    Google Scholar 

  • Cai, J.; Nelson, K. C.; Wu, M.; Sternberg, P.; Jones, D. P. Oxidative damage and protection of the RPE. Prog. Retin. Eye Res. 19(2):205–221; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Campochiaro, P. A. Cytokine production by retinal pigmented epithelial cells. Int. Rev. Cytol. 146:75–82; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Campochiaro, P. A. Retinal and choroidal neovascularization. J. Cell. Physiol. 184:301–310; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Campochiaro, P. A.; Hackett, S. F.; Vinores, S. A. Growth factors in the retina and retinal pigment epithelium. Prog. Retin. Eye Res. 15:547–567; 1996.

    Article  CAS  Google Scholar 

  • Campochiaro, P. A.; Soloway, P.; Ryan, S. J.; Miller, J. W. The pathogenesis of choroidal neovascularization in patients with age-related macular degeneration. Mol. Vis. 5:34; 1999.

    PubMed  CAS  Google Scholar 

  • Crane, I. J.; Kuppner, M. C.; McKillop-Smith, S.; Knott, R. M.; Forrester, J. V. Cytokine regulation of RANTES production by human retinal pigment epithelial cells. Cell Immunol. 184:37–44; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Crane, I. J.; Kuppner, M. C.; McKillop-Smith, S.; Wallace, C. A.; Forrester, J. V. Cytokine regulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) production by human retinal pigment epithelial cells. Clin. Exp. Immunol. 115:288–293; 1999.

    Article  PubMed  CAS  Google Scholar 

  • de, B. J.; Hack, C. E.; Verhoeven, A. J., et al. Chemoattractant and neutrophil degranulation activities related to interleukin-8 in vitreous fluid in uveitis and vitreoretinal disorders. Invest. Ophthalmol. Vis. Sci. 34:3376–3385; 1993.

    Google Scholar 

  • Dunn, K. C.; Aotaki-Keen, A. E.; Putkey, F. R.; Hjelmeland, L. M. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp. Eye Res. 62:155–169; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Elner, S. G.; Elner, V. M.; Jaffe, G. J.; Stuart, A.; Kunkel, S. L.; Strieter, R. M. Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr. Eye Res. 14:1045–1053; 1995.

    PubMed  CAS  Google Scholar 

  • Fuentes, M. E.; Durham, S. K.; Swerdel, M. R.; Lewin, A. C.; Barton, D. S.; Megill, J. R.; Bravo, R.; Lira, S. A. Controlled recruitment of monocyte and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. J. Immunol. 155:5769–5776; 1995.

    PubMed  CAS  Google Scholar 

  • Goede, V.; Brogelli, L.; Ziche, M.; Augustin, H. G. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int. J. Cancer 82:765–770; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Green, W. R.; Enger, C. Age-related macular degeneration histopathologic studies. Ophthalmology 100:1519–1535; 1993.

    PubMed  CAS  Google Scholar 

  • Grossniklaus, H. E.; Cingle, K. A.; Yoon, Y. D.; Ketkar, N.; L'Hernault, N.; Brown, S. Correlation of histologic 2-dimensional reconstruction and confocal scanning laser microscopic imaging of choroidal neovascularization in eyes with age-related maculopathy. Arch. Ophthalmol. 118:625–629; 2000.

    PubMed  CAS  Google Scholar 

  • Grunwald, J.; Hariprasad, S.; DuPont, J.; Maguire, M.; Fine, S.; Brucker, A.; Maguire, A.; Ho, A. Foveolar choroidal blood flow in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 39:385–390; 1998.

    PubMed  CAS  Google Scholar 

  • Holtkamp, G. M.; De Vos, A. F.; Peek, R.; Kijlsta, A. Analysis of the secretion pattern of monocyte chemotactic protein-1 (MCP-1) and transforming growth factor-beta 2 (TGF-β2) by human retinal pigment epithelial cells. Clin. Exp. Immunol. 118:35–40; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Holtkamp, G. M.; Van Rossem, M.; De Vos, A. F.; Willekens, B.; Peck, R.; Kijlsta, A. Polarized secretion of IL-1 and IL-8 by human retinal pigment epithelial cells. Clin. Exp. Immunol. 112:34–43; 1998.

    Article  PubMed  CAS  Google Scholar 

  • King, G.; Suzuma, K. Pigment-epithelium-derived factor—a key coordinator of retinal neuronal and vascular functions. N. Engl. J. Med. 342:349–351; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ment, L. R.; Stewart, W. B.; Scaramuzzino, D.; Madri, J. A. An in vitro three-dimensional coculture model of cerebral microvascular angiogenesis and differentiation. In Vitro Cell. Dev. Biol. 33A:684–691; 1997.

    Google Scholar 

  • Montesano, R.; Orci, L.; Vassalli, J. D. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell. Biol. 97(5):1648–1652; 1983 [part 1].

    Article  PubMed  CAS  Google Scholar 

  • Mousa, S. A.; Lorelli, W.; Campochiaro, P. A. Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigment epithelial cells. J. Cell Biochem. 74:135–143; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Murata, T.; He, S.; Hangai, M., et al.. Peroxisome proliferator-activated receptor-γ ligands inhibit choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 41:2309–2317; 2000.

    PubMed  CAS  Google Scholar 

  • Murata, T.; Yoshikawa, H.; Hata, Y.; Tsutsumi, C., et al. The role of monocyte chemoattractant protein-1 expression in the pathogenesis of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 42:S226; 2001.

    Google Scholar 

  • Nicosia, R. F.; Ottinetti, A. Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell. Dev. Biol. 26:119–128; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Oh, H.; Takagi, H.; Takagi, C., et al. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest. Ophthalmol. Vis. Sci. 40:1891–1898; 1999.

    PubMed  CAS  Google Scholar 

  • Sakamoto, T.; Sakamoto, H.; Hinton, D. R.; Spee, C.; Ishibashi, T.; Ryan, S. J. In vitro studies of human choroidal endothelial cells. Curr. Eye Res. 14:621–627; 1995a.

    PubMed  CAS  Google Scholar 

  • Sakamoto, T.; Sakamoto, H.; Murphy, T. L.; Spee, C.; Soriano, D.; Ishibashi, T.; Hinton, D. R.; Ryan, S. J. Vessel formation by choroidal endothelial cells in vitro is modulated by retinal pigment epithelial cells. Arch. Ophthalmol. 113:512–520; 1995b.

    PubMed  CAS  Google Scholar 

  • Sakamoto, T.; Spee, C.; Scuric, Z.; Gordon, E. M.; Hinton, D. R.; Anderson, W. F.; Ryan, S. J. Ability of retroviral transduction to modify the angiogenic characteristics of RPE cells. Graefes Arch. Clin. Exp. Ophthalmol. 236:220–229; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Salcedo, R.; Ponce, M.; Young, H. A.; Wasserman, K.; Ward, J. M.; Kleinman, H. K.; Oppenheim, J. J.; Murphy, W. J. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96:34–40; 2000.

    PubMed  CAS  Google Scholar 

  • Scherberich, A.; Beretz, A. Culture of vascular cells in tridimensional (3−D) collagen: a methodological review. Therapie 55:35–41; 2000.

    PubMed  CAS  Google Scholar 

  • Stephan, H.; Spee, C.; Murata, T.; Cui, J. Z.; Ryan, S. J.; Hinton, D. R. Rapid isolation of choriocapillary endothelial cells by lycopersicon esculentum-coated Dynabeads. Graefes Arch. Clin. Exp. Ophthalmol. 236:779–784; 1998.

    Article  Google Scholar 

  • Strieter, R. M.; Kunkel, S. L.; Elner, V. M., et al. Interleukin-8: a corneal factor that induces neovascularization. Am. J. Pathol. 141:1279–1284; 1992.

    PubMed  CAS  Google Scholar 

  • Yang, S.; Graham, J.; Kahn, J. W.; Schwartz, E. A.; Gerritsen, M. E. Functional role for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am. J. Pathol. 155:887–895; 1999.

    PubMed  CAS  Google Scholar 

  • Yoshida, A.; Yoshida, S.; Khalil, A. K.; Ishibashi, T.; Inomata, H. Role of NF-κB-mediated interleukin-8 expression in intraocular neovascularization. Invest. Ophthalmol. Vis. Sci. 39:1097–1106; 1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. McLaughlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, W., Zheng, J.J. & McLaughlin, B.J. An in vitro model of the back of the eye for studying retinal pigment epithelial-choroidal endothelial interactions. In Vitro Cell.Dev.Biol.-Animal 38, 228–234 (2002). https://doi.org/10.1290/1071-2690(2002)038<0228:AIVMOT>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2002)038<0228:AIVMOT>2.0.CO;2

Key words

Navigation